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Ballistic transport through a two-dimensional cross junction is chaotic. The classical transmissivity,
from which total transmission coefficients are obtained, exhibits self-similar regions of high transparency
about a hierarchy of injection angles, a\. These geometrical channels dominate the phase space of pos-
sible exits from the junction. Long dwell times within the junction, a manifestation of irregular scatter-
ing, strongly enhance the role of random processes in real devices.

PACS numbers: 73.40.—c, 05.45.+b

Recently, anomalous magnetoresistance phenomena
observed at “‘quantum wire” junctions have been success-
fully modeled by a remarkably simple cl/assical model.'
Closer comparison with experimental results, however,
reveals significant differences which appear to arise from
random scattering. These anomalies are fully manifested
only when, with adequate mean free path and boundaries
that are sufficiently reflective (i.e., specular), electrons
can follow trajectories through junctions without loss of
momentum memory.’ Below, we quantify the require-
ments of the classical model by determining precisely
how “specular” and how ‘“‘ballistic” transport must be
before fully developed anomalies emerge. This explora-
tion unveils the intrinsically chaotic nature of electron
transport through a two-dimensional (2D) cross junc-
tion.

The devices used in experiments are here modeled by
infinite-wall potentials forming the edges of a symmetric
2D junction.® Junction geometry is completely specified
by a single parameter 7=r;/W, where r; is the (con-
stant) radius of curvature of the corners and W is the
width of the probes leading to the junction. (Carets
denote lengths normalized to W.) The transition from
7 =0 to values > 1 describes a smooth evolution from a
square- to a round-cornered junction [Fig. 1(a), insets].
We calculate classical transmission coefficients 7;, (the
total fraction of flux injected via lead j which emerges in
lead i) by integrating classical trajectories over the in-
cident (y,,a,) and outgoing (y,,a,) phase spaces of the
probes:

T,j=fa'y,da,dyjdajg(yj,aj)Tij(y,,a,fyj,aj). (1)

Here, y; and a, are the transverse coordinate and angu-
lar direction of a particle at the boundary between lead j
and the junction proper.* The classical transmissivity
T.;(yi,a,ly,,a,), appearing as the kernel of Eq. (1), is
the amplitude (either 0 or 1) that a trajectory exists link-
ing specific coordinates in the incident (y;,a,) and outgo-
ing (y,,a,) spaces. Equation (1) is weighted by the in-
cident electron distribution function g(y,,a;). At B=0,
for infinite-wall potentials and the simplest connection
to electron reservoirs, g(y,,a,) =cos(a,)/2W. These
simplifications reduce the problem to that of classical bil-
liards: T;, are calculated following trajectories of (typi-
cally 10°) electrons as they traverse the junction. Subse-
quently, Biittiker’s model® provides a prescription for

calculating resistances from the T,; obtained.

Figure 1(a) shows the dependence of the transmission
probabilities upon junction geometry. Exact results ob-
tained analytically for 7 =0 (Tr =/2-1, Ts=1— V2/2,
T =0), smoothly evolve to asymptotic values (Tr=Tg
=Tg=1+) as #— oo. Solid lines in Figs. 1(a) and 1(b)
display results for the idealized case where, as in Ref. 1,
it is assumed that the mean free path /y is infinite and
reflections at the boundaries are completely specular.
(The dashed lines, discussed below, display the effect of
random scattering.) The trend toward asymptotic equal-
ization of the T, occurs through scrambling'— after in-
jection into a rounded junction electrons bounce many
times before finding an exit port. This trend emerges for
r> 1 when the width of the exits, W=1, becorpes small
compared to the extent of the junction itself, /=27+1.
Interestingly, Tr remains flat up to 7~ 3, beyond which
it is reduced by scrambling. This behavior apparently
contradicts the conjectured importance of collimation,®’
which is supposed to enhance Tr when, with increasing 7,
the leads become increasingly flared at the junction. We
discuss this below.

The negative bend resistance® at zero magnetic field,
Rp(0)=(Ts—Tr)/[4Ts(Ts+ Tr)], elucidates the in-
terplay between T,,. Figure 1(b) shows that Rg(0), nor-
malized to the classical ballistic lead resistance Ry
=(hn/e)*(1/psW), starts from its exact value at 7 =0,
(1/~2—3)/(1—1/v/2)~—0.146, and vanishes as
F— o due to asymptotic equalization. A pronounced
dip occurs near F~3 because T decreases while T¢
remains roughly constant. This decrease in Ts, and the
enhancement of |Rg|, are strongest at Fe =1 ++/2 when
direct paths from the injection lead to the side leads are
“shadowed” by rounded corners.

Figures 1(c) and 1(d) quantify what is required for
the simple model to hold. Figure 1(c) shows the average
number of boundary reflections, (N;,), suffered while
passing from lead j to each exit lead, i. Similarly, Fig.
1(d) shows the average path length (3',-,) traversed. Both
rise dramatically beyond 7~ 1. Fine dotted lines denote
the regime of a recent experimental test of the classical

model.> In these experiments, memory loss is estimated

to occur, on average, after ~7 boundary collisions.*®’

Figure 1(c) shows that (N,)~7 for F~3. The mean
free path, which decreases when electron density is re-
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FIG. 1. Summary of the simple model. (a) Transmission

probabilities for forward (TF), side (Ts), and backscattering
(Tg), as a function of junction geometry (solid lines). Arrows
at left show analytic results for 7 =0. Top insets: Junctions for
three values of 7. (b) Solid line shows the B =0 bend resis-
tance, proportional to Ts —Tr. Enhancement at F—~3 arises
from ‘“‘shadowing,” but scrambling suppresses Rz(0)— 0 as
F— oo, Dashed lines in (a) and (b) show the effect of random
scattering (see text). (c),(d) Average number of boundary
reflections (NV,)) and average path length traversed (S, in
passing through the junction to each exit lead.

duced,’ varied from [o~36 to [~4."° Accordingly, Fig.
1(d) shows that (S, attains these values for 7~5 and
0.5, respectively. Note that these average values, (N,
and (S,,), verge on what is experimentally available even
for moderate F, showing that scattering significantly
affects T, over the entire regime of recent experiments.
In the presence of random scattering we picture the
transmission probabilities as comprising both determinis-
tic and random parts: T,, =T+ 7" An electron
scattered from its initial (deterministic) trajectory may
ultimately exit through any lead. Naively, we might as-
sume it then contributes equally to the T,\*". Without
further refinements, the idealized model can be em(ployed
to determine the relative weight of T(d‘“) and T, an)
real samples. We calculate the fracttonal transmlssmn
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FIG. 2. Statistics of junction transmission. (a) The frac-
tional weight of terms in Ts involving exactly N reflections, for
a family of 7 values. (b) Dwell times vs geometry for the N-

and S-fractional distributions. In both cases all leads show
identical behavior.

probabilities for each exit lead i, T,\*’/T,, and T°'/T,,,
formed solely from trajectories involving exactly N
reflections or requiring traversal of exactly S units of
path length, respectively. For brevity we show only one
of these, TS(N)/TS, for transmission into a side probe
[Fig. 2(a)l. Its behavior is generic to all: For small 7 a
peak at low NV is followed by a strict exponential decay.
As F increases, low-N terms become precipitously sup-
pressed. For 7> 1 there is a rapid increase in the ex-
ponential decrements, which we term dwell times,' y,(IS)
and y(w (These are extracted from the fractional dis-
tributions [see Fig. 2(a), inset]l.) Their steep rise
quantifies the dramatically increasing weight of high-
order terms. On a linear scale the distributions ultimate-
ly become almost flat; averages [Figs. 1(c) and 1(d)]
have little meaning. This behavior signifies that, even for
moderate 7, many electrons become temporarily trapped,
following complicated trajectories before leaving the
junction. This increase in the y,’s presages the emer-
gence of fully chaotic behavior in T, (y,,a,|y,.a;).

The irregular nature of 2D junction scattering is clear-
ly evident in Fig. 3(a), where we plot

Ne(y,,a,) =N(y,,a/)/fdypdap Ty (r.arly, a,)

vs a;, for y,=0, where N(y,,a,) is the number of
reflections sustained in transversal, beginning from
(y;,a,). Simply stated, N displays the number of
reflections required for junction traversal, for those a;
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which ultimately lead into the forward probe. Two dis-
tinct features are exhibited. First, we mark by arrows a
sequence of finite angular apertures, geometrical chan-
nels, comprising direct exit paths. Second, outside of
these apertures the transmissivity appears erratic. We
discuss these in turn.

The geometrical channels are finite regions of incident
phase space leading to short exit paths and few
reflections within the junction. In real samples, these
collections of trajectories are least susceptible to random
scattering and provide the principal contribution to
T,-}d“"). We denote the angular positions and apertures of
the principal channels by ay and Aax, respectively. The
central channel, for example, is a cone of trajectories
leading directly (N =0) into the forward lead: ao=0
and Aap=2tan ~'[1/2(2fF+1)). For the case of Ty,
low-N principal channels constitute the vestiges of col-
limation in a cross junction. (Viewed strictly, the con-
cept of collimation pertains directly only to a simple horn
geometry.®) Contributions from collimated electrons ap-
pear as a small rise at low N upon a large, exponentially
decreasing background dominated by irregular scatter-
ing, i.e., scrambling [Fig. 2(a), inset].

Self-similarity, characteristic of chaotic dynamics,'? is
evident in Fig. 3(b), where the first eight principal chan-
nels are separately magnified. Their sequence of posi-
tions {ay} and apertures {Aan} satisfy simple asymptotic
scaling relations: limy_. «Aay/Aay—; =f(F) and
limy . wlay+1 —an)/(ay —ay—1) =f(F). We also find
exact expressions, valid for all V

A\ N AN
——EL:'[—(—’—)-, , Aay =2Aao~&— ) (2)
2 1+ ()N 1+ f(F)N
Through such relations, the function f(7) generates the
complete structure of phase space. (For our model,
f(7) = expl(2/fF)?].) Within each channel a staircase
of higher plateaus appears. These scale similarly, and
occur when the number of reflections in the collection
lead progressively increases by 1. Equations (2) are
specific to our simple model, but we expect that the self-
similarity demonstrated is generic to irregular junction
scattering in 2D. Although our brief discussion pertains
only to injection on axis (y; =0), the entire phase space
is organized in self-similar fashion (Fig. 4).

Outside of the principal channels the transmissivity
appears to depend erratically upon injection angle «,.
Electrons injected outside {ay} generally suffer many
reflections before emerging; this leads to large y;; [Fig.
2(b)]. This is one manifestation of the strange repel-
ler—the set of closed orbits within the junction— which
is at the heart of the chaotic behavior. These closed or-
bits are not accessible from the incident (y,,a,) phase
space. However, if an injected electron closely ap-
proaches such an orbit after several reflections, it can
persist in a quasistable trajectory until it is ﬁnally ex-
pelled from the junction. (In the limit S— oo, y,, glve
a measure of the fractal dimension of the repcller.I )
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FIG. 3. Geometrical channels of Tr, for 7=10. (a) Num-
ber of boundary reflections NV vs incident angle a, for electrons
injected on axis and collected in the forward lead. Arrows
mark principal geometrical channels, ax. These are separately
magnified in (b) to display their self-similarity; their respective
angular apertures are noted.

Another striking property of the repeller is its fractal or-
ganization of phase space. Two electrons injected with
arbitrarily close coordinates in (y;,a;), yet outside the
apertures {Aan}, will follow trajectories differing arbi-
trarily in the number of reflections sustained. In general,
this pair of electrons will not emerge from the junction
via the same lead.°® (By contrast, all electrons within a
given Aay follow the same sequence of reflections.) The
seemingly random regions of phase space outside {Aan}
are actually completely structured into successive, self-
similar hierarchies of higher-order trajectories.

Figure 4(a) shows the evolution of the map of angles

aF) representing electrons injected on axis (y, =0) and
collected into the forward lead, as a function of . Dark
bands correspond to principal geometric channels {Aay};
higher-order channels split off from these as finer bands.
As F increases, the measure of phase space occupied by
the principal set {ay} diminishes— asymptotically the T,
become equalized. A complete map of the 2D phase
space of electrons collected into the forward lead (y/ (F)

a') is shown in Fig. 4(b) for 7 =5.

Principal geometrical channels {ay} provide the larg-
est contribution to 7.\%" for each exit lead i. As N in-
creases, however, fewer electrons survive random scatter-
ing while traversing what become increasingly more
complicated paths through the junction. We explore
this, modeling diffuse boundaries by ascribing a proba-
bility p that electrons reflect specularly and a probability
1 — p that they scatter randomly after each boundary col-
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FIG. 4. Fractal nature of 2D junction transmissivity. (a) Map of incident angles a,/” for electrons injected on axis and collected
into the forward lead vs 7. Principal geometrical channels {an} appear as dark bands. (b) Map of incident coordinates (y,7,a") of
electrons collected into the forward lead for a junction with 7 =5. Upper-left inset: Blowup of region in the smaller box at the top
center. Complementary maps of electrons collected into other leads (not shown), (y,(S),a,(S)) and (y# a®), exhibit similar charac-

teristics.

lision.'* This introduces a transparency of p™ to the Nth
geometrical channel. Finite mean free paths are mod-
eled by introducing a probability 1 —exp(—1//y) that an
electron scatters elastically (withﬂ angular isotropy)
within the junction’s interior. Here / is the distance trav-
eled since the previous scattering event. The effect of
such random scattering upon the T;; and upon R3(0),
for values p =0.88 and /o =20 chosen to approximate the
regime of Ref. 2, are shown in Figs. 1(a) and 1(b) as
dashed lines. Even within these simple approximations
memory-loss scattering does not occur isotropically
within the junction; T,,“’") contribute unequally to each
exit lead i [Fig. 1(a)]. The net effect of random process-
es is to eliminate contributions to T,}de‘) from trajectories
involving large N and large S. As a result, transport
anomalies, such as Rp(0), become completely suppressed
with only moderate junction rounding—well before
deterministic scrambling becomes manifest [Fig. 1(b)].

We have described the chaotic nature of the classical
transmissivity T,;(a;,y,|a;,p,) in a 2D cross junction.'*
Even after integration to yield transmission coefficients,
a strong signature of irregular dynamics persists. We
find the fractal nature of phase space in a rounded junc-
tion enhances the role of random scattering, resulting in
the premature suppression of transport anomalies. Note
that recent experiments involve ballistic, quasi-one-
dimensional, junctions. In these, transport involves only
several modes and the occupation number is variable
through a gate potential.> The fractal behavior emerg-
ing in this work, however, involves continuous phase-
space coordinates. This suggests future explorations in
multimode junctions where a transition from classical to
quantized irregular transport might be observed.
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FIG. 4. Fractal nature of 2D junction transmissivity. (a) Map of incident angles a*’ for electrons injected on axis and collected
into the forward lead vs 7. Principal geometrical channels {an} appear as dark bands. (b) Map of incident coordinates (y/*,a") of
electrons collected into the forward lead for a junction with 7 =5. Upper-left inset: Blowup of region in the smaller box at the top
center. Complementary maps of electrons collected into other leads (not shown), (»/5,af>’) and (y/®,a/®), exhibit similar charac-
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